Open Classical Systems
نویسنده
چکیده
Open systems are usually understood as a small Hamiltonian system (i.e. with a finite number of degrees of freedom) in contact with one or several large reservoirs. There are several ways to model reservoirs and we will take the point of view that the reservoirs are also Hamiltonian systems themselves. It is a convenient physical and mathematical idealization to separate scales and assume that the reservoirs have infinitely many degrees of freedom. We will also assume that, to start with, the reservoirs are in equilibrium, i.e., the initial states of the reservoirs are distributed according to Gibbs distribution with given temperatures. It is also mathematically convenient to assume that the Gibbs measures of the reservoir have very good ergodic properties. This is, in general, a mathematically difficult problem and we will circumvent it by assuming that our reservoirs have a linear dynamics (i.e the Gibbs measures are Gaussian measures). Our model of a reservoir will be the classical field theory given by a linear wave equation in R ∂ t φt(x) = ∆φt(x) . (1.1)
منابع مشابه
Classical wavelet systems over finite fields
This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...
متن کاملMass Participation Factor in Defining Non-classical Range of Behavior for Mass Isolated Systems
The new techniques in seismic design of structures are usually attributed to high damping ratios. In such systems, the assumption of classical (i.e. proportional) damping is not valid and in most cases they should be considered as Non-classical systems. Since the analytical tools for studying the behavior of such structures are not easily available, the present work attempts to find the limits,...
متن کاملMass Participation Factor in Defining Non-classical Range of Behavior for Mass Isolated Systems
The new techniques in seismic design of structures are usually attributed to high damping ratios. In such systems, the assumption of classical (i.e. proportional) damping is not valid and in most cases they should be considered as Non-classical systems. Since the analytical tools for studying the behavior of such structures are not easily available, the present work attempts to find the limits,...
متن کاملOn the pointfree counterpart of the local definition of classical continuous maps
The familiar classical result that a continuous map from a space $X$ to a space $Y$ can be defined by giving continuous maps $varphi_U: U to Y$ on each member $U$ of an open cover ${mathfrak C}$ of $X$ such that $varphi_Umid U cap V = varphi_V mid U cap V$ for all $U,V in {mathfrak C}$ was recently shown to have an exact analogue in pointfree topology, and the same was done for the familiar cla...
متن کاملCan One Validly Use Classical Statistical Inference in Open Quantum Systems?
A major problem to perform statistical inference in open quantum systems is the perturbation induced by the measurement process. However, at least theoretically, a suitable choice of the measurement process could provide a consistent approach through classical stochastic processes. This work proposes a method to perform statistical inference on open quantum systems represented by quantum Markov...
متن کاملLK-INTERIOR SYSTEMS AS SYSTEMS OF “ALMOST OPEN” L-SETS
We study interior operators and interior structures in a fuzzy setting.We investigate systems of “almost open” fuzzy sets and the relationshipsto fuzzy interior operators and fuzzy interior systems.
متن کامل